WikiDer > Теорема об эквивариантном индексе

Equivariant index theorem

В дифференциальная геометрия, то эквивариантная теорема об индексе, из которых существует несколько вариантов, вычисляет (градуированный) след элемента компактной группы Ли, действующей в данной ситуации, через интеграл по фиксированные точки элемента. Если элемент нейтрален, то теорема сводится к обычному теорема об индексе.

Классическая формула, такая как Формула Атьи – Ботта является частным случаем теоремы.

Заявление

Позволять быть комплект модуля clifford. Предположим компактную группу Ли грамм действует как на E и M так что является эквивариантный. Позволять E получить связь, совместимую с действием грамм. Наконец, пусть D быть Оператор Дирака на E связанные с заданными данными. Особенно, D ездит с грамм и, таким образом, ядро D конечномерное представление грамм.

В эквивариантный индекс из E это виртуальный персонаж дан, взяв суперслед:

Смотрите также

Рекомендации

  • Берлайн, Николь; Getzler, E .; Вернь, Мишель (2004), Тепловые ядра и операторы Дирака, Берлин, Нью-Йорк: Springer-Verlag