WikiDer > Треугольник Хосояс - Википедия
В Треугольник Хосоя или же Треугольник Хосои (первоначально Треугольник Фибоначчи) представляет собой треугольное расположение чисел (например, Треугольник Паскаля) на основе Числа Фибоначчи. Каждое число представляет собой сумму двух чисел, указанных выше либо по левой диагонали, либо по правой диагонали. Первые несколько строк:
1 1 1 2 1 2 3 2 2 3 5 3 4 3 5 8 5 6 6 5 8 13 8 10 9 10 8 13 21 13 16 15 15 16 13 21 34 21 26 24 25 24 26 21 34 55 34 42 39 40 40 39 42 34 55 89 55 68 63 65 64 65 63 68 55 89144 89110102105104105102110 89144 и т. Д.
(См. (Последовательность A058071 в OEIS)).
Имя
Название «Треугольник Фибоначчи» также использовалось для треугольников, составленных из чисел Фибоначчи или связанных чисел - Wilson (1998), или треугольников со сторонами Фибоначчи и интегральной площадью - Yuan (1999), следовательно, неоднозначно.
Повторение
Цифры в этом треугольнике подчиняются повторяющиеся отношения
- ЧАС(0, 0) = ЧАС(1, 0) = ЧАС(1, 1) = ЧАС(2, 1) = 1
и
- ЧАС(п, j) = ЧАС(п − 1, j) + ЧАС(п − 2, j)
- = ЧАС(п − 1, j − 1) + ЧАС(п − 2, j − 2).
Связь с числами Фибоначчи
Записи в треугольнике удовлетворяют тождеству
- ЧАС(п, я) = F(я + 1) × F(п − я + 1).
Таким образом, две крайние диагонали - это числа Фибоначчи, а числа на средней вертикальной линии - это квадраты чисел Фибоначчи. Все остальные числа в треугольнике являются произведением двух различных чисел Фибоначчи, больших 1. Суммы строк являются первыми. свернутые числа Фибоначчи.
Рекомендации
- Харуо Хосоя (1976), «Треугольник Фибоначчи», Ежеквартальный отчет Фибоначчи, т. 14, вып. 2. С. 173–178.
- Томас Коши (2001), Числа Фибоначчи и Люка и приложенияС. 187–195. Нью-Йорк: Вили.
- Брэд Уилсон (1998), "Треугольник Фибоначчи по модулю п". Ежеквартальный отчет Фибоначчи, т. 36, нет. 3. С. 194–203.
- Мин Хао Юань (1999), "Результат по гипотезе о треугольнике Фибоначчи, когда k= 4. "(На китайском.) Журнал Хуанганского педагогического университета, т. 19, нет. 4. С. 19–23.