WikiDer > Оскулирующая кривая - Википедия
В дифференциальная геометрия, соприкасающаяся кривая это плоская кривая из данной семьи, которая имеет максимально возможный порядок контакт с другой кривой, т. е. если F это семья плавные кривые, C - гладкая кривая (вообще говоря, не принадлежащая F), и п это точка на C, то соприкасающаяся кривая от F в п кривая от F что проходит через п и имеет столько же своих производные в п равны производным от C насколько возможно.[1][2]
Термин происходит от латинского корня «osculate», чтобы целовать, потому что две кривые соприкасаются друг с другом более тесным образом, чем простое касание.[3]
Примеры
Примеры соприкасающихся кривых разного порядка включают:
- В касательная линия к кривой C в какой-то момент п, соприкасающаяся кривая из семейства прямые линии. Касательная линия имеет свою первую производную (склон) с C и поэтому имеет контакт первого порядка с C.[1][2][4]
- В соприкасающийся круг к C в п, соприкасающаяся кривая из семейства круги. У соприкасающегося круга есть как первая, так и вторая производные (эквивалентно, его наклон и кривизна) с C.[1][2][4]
- Соприкасающаяся парабола C в п, соприкасающаяся кривая из семейства параболы, имеет контакт третьего порядка с C.[2][4]
- Прикосновение конуса к C в п, соприкасающаяся кривая из семейства конические секции, имеет контакт четвертого порядка с C.[2][4]
Обобщения
Концепция оскуляции может быть обобщена на пространства более высоких измерений и на объекты, которые не являются кривыми внутри этих пространств. Например, соприкасающаяся плоскость к пространственная кривая плоскость, контактирующая с кривой второго порядка. Это максимально высокий порядок, который возможен в общем случае.[5]
Говорят, что в одном измерении аналитические кривые соприкасаются в точке, если они разделяют первые три члена своего Расширение Тейлора об этом. Эту концепцию можно обобщить на суперскуляция, в котором две кривые имеют больше общего, чем первые три члена их разложения Тейлора.
Смотрите также
Рекомендации
- ^ а б c Раттер, Дж. У. (2000), Геометрия кривых, CRC Press, стр. 174–175, ISBN 9781584881667.
- ^ а б c d е Уильямсон, Бенджамин (1912), Элементарный трактат по дифференциальному исчислению: содержащий теорию плоских кривых с многочисленными примерами, Лонгманс, Грин, стр. 309.
- ^ Макс, Блэк (1954–1955), «Метафора», Труды Аристотелевского общества, Н.С., 55: 273–294. Перепечатано в Джонсон, Марк, изд. (1981), Философские взгляды на метафору, University of Minnesota Press, стр. 63–82, ISBN 9780816657971. С. 69.: «Оскулирующие кривые целуются недолго и быстро возвращаются к более прозаичному математическому контакту».
- ^ а б c d Тейлор, Джеймс Морфорд (1898), Элементы дифференциального и интегрального исчисления: с примерами и приложениями, Ginn & Company, стр. 109–110..
- ^ Крейсциг, Эрвин (1991), Дифференциальная геометрия, Математические выставки Университета Торонто, 11, Courier Dover Publications, стр. 32–33, ISBN 9780486667218.