WikiDer > Космическая гармония
Рудольф Лабан создал теорию и практику движения, отражающие то, что он считал Космическая гармония. Практика / теория основана на универсальных закономерностях природы и человека как часть универсального замысла / порядка и была названа Лаваном: Космическая гармония или же Хоревтика.
Лаван, заложивший основу Анализ движения Лавана, интересовался серией естественных последовательностей движений, которым мы следуем в нашей повседневной деятельности.[1] Будучи танцором / хореографом, он видел повседневные модели человеческих действий и абстрагировал их сущность в «искусстве движения». Он видел пространственные закономерности в человеческих движениях и узнавал формы Платоновы тела в рамках этих шаблонов. Он применял идеальные паттерны Платоновых Тел как форм к актуализированному движению людей - выравниваясь с пространством этих форм и очень приближаясь к нему. Связывая направления вершин формы, следуя естественным пространственным движениям для перемещения по всем направлениям внутри этой формы, он пришел к определенному движению. Напольные весы: шаблонные последовательности движений, которые можно повторять, в которых человек движется через Платоновое Тело определенным образом.
Перемещение этих весов открывает тело в пространстве, расширяет пространственное восприятие и в то же время уравновешивает тело в пространстве. Вот почему его космическая теория называется космической гармонией.
История
Видеть Рудольф Лабан
Связанные термины
Общее пространство
Общее пространство - это пространство, в котором мы движемся. Это реальное пространство или среда, например, комната, в которой мы находимся, или улица.
Кинесфера
Личное пространство или кинесфера - это пространство вокруг нас в пределах досягаемости конечностей без изменения своего места.[2] Мы можем использовать большую область вокруг нас (дальняя кинесфера), когда делаем большие движения, особенно нашими конечностями. Или мы можем использовать небольшую область (ближнюю кинесферу), когда мы движемся только в пределах досягаемости от нас самих. Промежуточное звено называется кинесферой средней дальности.
Уровни
Лаван считал, что существует три «типа» танцоров (или вообще грузчиков). Те, кому нравится двигаться на высоком уровне, например, прыгать и отрываться от земли. Те, кому нравится двигаться на центральном (среднем) уровне, их тела ведут более чувственные движения. И тем, кто любит двигаться на Глубинном (Низком) Уровне [...], кто предпочитает более земные движения.[3]
Пути
Путь - это путь, по которому следует движение от одной точки пространства к другой. В Кинесфере определены разные подходы к Пути движения:[2]
- Центральный путь - движение, которое инициируется или проходит через центр тела.
- Периферийный путь - движение по внешним границам кинесферы.
- Поперечный путь - движение, проходящее между центром тела и периферией кинесферы.
Направления
Лабан нашел систему для определения направлений, в которых мы можем двигаться. Эта система включает 3 различных уровня, а также одно-, двух- и трехмерные направления. 26 направлений, входящих в систему, являются производными от вершин Октаэдра, Икосаэдра и Куба.
Лаван создал символы для всех направлений, которые он определил в этой системе. Эти символы можно использовать как систему обозначений, как в Лабанотация, чтобы описать, куда движется человек в пространстве.
Хотя часто говорится о «перемещении в точку в пространстве», Лаван явно не рассматривал движение как «перемещение от точки к точке» или изменение от положения к положению. «В течение ... десяти лет [1917-1927] он пытался решить проблему, как написать движение, а не только пройденные позиции, задача, которая оказалась чрезвычайно сложной. Все его различные решения вплоть до 1927 года - и там много записано в книге Лавана Хореография [4] - сохранить эту надежду ».[5]
В его книге Хоревтика (1966) он пишет: «Будущее развитие кинетографии должно включать возможность записи форм в свободном пространстве ... концепция записи, способной делать это, - давняя мечта в этой области исследований».[1]
Склонности
Один из уникальных аспектов концепции пространства Лавана стал известен как Склонности.
An склонность задуман как «диагональ, отклоненная через близкое измерение, или, альтернативно, измерение, отклоненное через одну из ближайших диагоналей», и, поскольку эти две концепции по существу идентичны, Лаван связал наклоны с тремя измерениями, поскольку они больше привычный.[6]
Следовательно, три типа наклонности различают:[7]
- Плоский наклоны - это диагонали, отклоненные на размер стороны (горизонтальный или боковой).
- Отвесный наклоны - это диагонали, отклоненные по вертикали вверх-вниз.
- Приостановленный наклоны - это диагонали, отклоненные передне-задним размером (сагиттальный).
Динамика в космосе
Одномерное пространство
Размеры определены как одиночные пространственные тяги с двумя полярными концами.[8]Это 3 перпендикулярные оси, пересекающиеся посередине. Три разных размера:
- Вертикальный размер (вверх-вниз)
- Горизонтальный размер (сбоку)
- Сагиттальный размер (спереди назад)
Точка пересечения находится в центре тяжести тела (среднее место). Платоново твердое тело, определяемое размерным крестом, является Октаэдр.
Лаван разработал шкалы движений, которые следуют этим трем измерениям, названные Размерные шкалы.
Двумерное пространство
Сочетание двух пространственных тяговых движений самолеты как в космосе, так и в теле. Комбинация горизонтальных и вертикальных размеров приводит к так называемой вертикальной плоскости двери. Эта плоскость также называется плоскостью презентации.
Комбинация горизонтальных и сагиттальных размеров дает горизонтальную плоскость или плоскость стола. Он также известен как плоскость общения.
Третья плоскость представляет собой комбинацию вертикального и сагиттального размеров и называется сагиттальной или колесной плоскостью. Его также называют плоскостью операций.[8]
Диаметры - это линии, соединяющие противоположные углы плоскостей. Каждая плоскость имеет 2 диаметра, пересекающихся посередине. Диаметр плоскостей составляет 2 штуки каждая. неравный пространственные тяги.
При соединении плоскостей все диаметры снова пересекаются в центре тяжести тела. Соединение углов плоскостей между собой приводит к Икосаэдр.
Лаван придумал множество способов упорядочить движения через Икосаэдр, каждый со своим характером и динамикой. Примеры этих шкал: Первичная шкала, шкалы осей, шкалы пояса, шкалы A и B.
Трехмерное пространство
Комбинации трех измерений или пространственные тяги становятся диагоналями; крайности далеких пространств, которые пересекают центр тела из одного угла воображаемого Куб в противоположный угол. Лаван разработал Диагональный масштаб исследовать эти крайности личного пространства.[8]
Весы анимированные: Чтобы посмотреть анимацию весов, перейдите в Весы Лавана
Напольные весы
Аналогично Музыкальная гамма, каждый хоревтическая гамма (или же шкала гармонии пространства) систематически охватывает определенные области пространства.
Хоревтические гаммы также можно сравнить с математическими головоломками, такими как Леонард Эйлер и его проблема Семь мостов Кенигсберга, а также Уильям Роуэн Гамильтон и его Икозианская игра. Хоревтические гаммы представить симметричные решения этих типов головоломок, выполненные в пространстве движения человеческого тела.
Наиболее Хоревтические гаммы следуйте обычным последовательным схемам, подобным этим головоломкам:
- Они образуют замкнутое кольцо (контур), заканчивающееся на том же месте, где и начинались.
- Они состоят из серии строк одного типа (например, все поперечный или все периферийный) или регулярных повторений (один центральный строка, за которой следует один периферийный линия и т. д.).
- Когда шкала связана с многогранник, они могут использовать каждую вершину один раз и только один раз или использовать каждое ребро (линию) один раз и только один раз перед завершением схемы.
- Они структурированы с трехмерной симметрией (вращательная симметрия и симметрия отражения).
Весы в икосаэдре
Лаван разработал множество шкал в Икосаэдр, некоторые из них с Поперечное движение, например оси и шкалы A и B, другие с Периферийное движение, как Ремень и Первичные весы.
В шкалах с поперечным движением человек движется от Направления в одной плоскости через вторую плоскость к Направлению в третьей плоскости, следуя естественному Пространственное притяжение недостающего измерения.
Например: когда человек начинает шкалу движения в правом верхнем направлении, он оказывается в вертикальной плоскости. Эта плоскость состоит из комбинации Вертикального и Горизонтального размеров. При достижении правильного высокого направления естественный способ уравновесить тело - двигаться к «отсутствующему» сагиттальному измерению, то есть в данном случае вперед или назад.
Чтобы выполнить задачу перехода от одной плоскости (в данном случае вертикальной) через другую к третьей, можно только пересечь горизонтальную плоскость и, таким образом, двигаться в направлении либо переднего нижнего, либо заднего нижнего направления в сагиттальной плоскости.
Обратите внимание, что путь движения в этом примере - это Поперечный путь, потому что он проходит между центром тела и периферией кинесферы. Движения, которые следуют определенному определению, как описано выше, Лаван назвал Трансверсали.
Таким образом, хотя человек перемещается из одного плана в другой, поскольку плоскости являются двухмерными, он движется через все планы и, таким образом, через все измерения в масштабе в целом, следуя органической организации тела, чтобы оставаться в равновесии. В частности, ощущение того, что вы ведете себя и ведете себя через все эти различные пространственные направления, добавляя измерения и снова оставляя их, может дать ощущение, что вы летите в пространстве, оттягиваетесь назад и снова взлетаете.
Узел-трилистник
Можно обнаружить, что образцы многих шкал основаны на Узел-трилистник. Это используется для представления пространственной модели «стандартного масштаба динаосферы». [1][9] и несколько раз появляется в неопубликованных рукописях Лавана, именуемых «узлом из 9 частей»,[10] выровненный с кольцом из 9 частей, следующих за гранями трех плоскостей внутри икосаэдра,[11] а также расположен вдоль шести граней октаэдра, создавая версию размерной шкалы.[12]
Рекомендации
- ^ а б c Лаван, Рудольф. Хоревтика (1966, 2011). Dance Books Ltd. ISBN 978-1-85273-148-9
- ^ а б Делл, Сесили. Космическая гармония (1966, 1977). Нью-Йорк: Dance Notation Bureau, Inc. ISBN 978-0-932582-12-6
- ^ Ньюлав и Долби. Лаван для всех (2004, 2009). Лондон: Nick Hern Books Limited ISBN 978-1-85-459-725-0
- ^ Рудольф Лабан. Хорография (1926), переведенный Evamaria Zierach и Джеффри Скотт Лонгстафф
- ^ Престон-Данлоп и Лахузен. Schrifttanz, вид немецкого танца в Веймарской республике (1990). Лондон: Книги о танцах
- ^ Лаван, Рудольф. Хореография (Немецкий) (1926). Йена: Евгений Дидерикс.
- ^ Бартениефф, И., Льюис, Д. Движение тела - Работа с окружающей средой (1980, 2002). Нью-Йорк: Рутледж. ISBN 0-677-05500-5
- ^ а б c Брэдли, Карен К. Рудольф Лабан (2009). Нью-Йорк: Рутледж. ISBN 978-0-415-37525-2
- ^ Мур, Кэрол-Линн. Симметрия и топология: инструменты построения теории Рудольфа Лабана. В Рудольф Лаван: новые грани человека и его идей (2011). Денвер Колорадо: Motus Humanus. ISBN 978-0-615-48421-1
- ^ Коллекция Лавана. (С. Б. N1). Копия Сильвии Бодмер из книги Рудольфа Лабана. Harmonie lehre der Bewegung (без даты). Написано от руки на немецком языке. Лондон: Центр Лабана.
- ^ Коллекция Лавана (258.45-258.47). Диаграммы космической гармонии Рудольфа Лабана и Сильвии Бодмер. Лондон: Центр Лабана.
- ^ Коллекция Лавана (091.01-091.18). Примечания и диаграммы, в основном касающиеся весов (без названия). Приписывается Рудольфу Лабану Сильвией Бодмер. Лондон: Центр Лабана. (без даты)