WikiDer > Проблема квадрата круга Тарского - Википедия
Проблема квадрата круга Тарского это вызов, поставленный Альфред Тарский в 1925 г. диск в самолете, разрежьте его на конечное количество частей и снова соберите части, чтобы получить квадрат равных площадь. Это было доказано Миклош Лацкович в 1990 г .; при разложении интенсивно используется аксиома выбора и поэтому неконструктивный. Лачкович оценил количество фигур в его разложении примерно в 10.50. Совсем недавно Эндрю Маркс и Спенсер Унгер (2017) дала вполне конструктивное решение с использованием Фигуры Бореля.
В частности, невозможно разрезать круг и сделать квадрат из частей, которые можно разрезать идеализированный ножницы (то есть Кривая Иордании граница). В доказательстве Лачковича используются неизмеримые подмножества.
Лацкович действительно доказал, что повторная сборка возможна. используя только переводы; вращения не требуются. Попутно он также доказал, что любой простой многоугольник в плоскости можно разложить на конечное число частей и собрать заново, используя только переводы, чтобы сформировать квадрат равной площади. В Теорема Больяи – Гервиена является связанным, но гораздо более простым результатом: он утверждает, что можно выполнить такое разложение простого многоугольника с конечным числом многоугольные части если для повторной сборки разрешены и сдвиги, и повороты.
Из результата Уилсон (2005) что можно выбирать фигуры таким образом, чтобы их можно было непрерывно перемещать, оставаясь при этом не пересекающимися, чтобы получить квадрат. Более того, это более сильное утверждение можно доказать только с помощью переводов.
Эти результаты следует сравнить с гораздо более парадоксальные разложения в трех измерениях, предусмотренных Парадокс Банаха – Тарского; эти разложения могут даже изменить объем комплекта. Однако на плоскости разложение на конечное число частей должно сохранять сумму Банаховы меры частей и, следовательно, не может изменить общую площадь набора (Универсал 1993).
Смотрите также
- Квадрат круга, другая проблема: задача (которая оказалась невыполнимой) построить для данного круга квадрат равной площади с линейка и компас один.
Рекомендации
- Хертель, Эйке; Рихтер, Кристиан (2003), "Квадрат круга рассечением" (PDF), Beiträge zur Algebra und Geometrie, 44 (1): 47–55, МИСТЕР 1990983.
- Лацкович, Миклош (1990), "Равносоставимость и несовпадение: решение проблемы квадрата круга Тарского", Journal für die Reine und Angewandte Mathematik, 404: 77–117, Дои:10.1515 / crll.1990.404.77, МИСТЕР 1037431.
- Лацкович, Миклош (1994), "Парадоксальные разложения: обзор последних результатов", Proc. Первый Европейский математический конгресс, Vol. II (Париж, 1992 г.), Успехи в математике, 120, Базель: Birkhäuser, стр. 159–184, МИСТЕР 1341843.
- Марк, Эндрю; Унгер, Спенсер (2017), "Круг Бореля в квадрате", Анналы математики, 186 (2): 581–605, arXiv:1612.05833, Дои:10.4007 / анналы.2017.186.2.4.
- Тарский, Альфред (1925), «Проблема 38», Fundamenta Mathematicae, 7: 381.
- Уилсон, Тревор М. (2005), «Версия непрерывного движения парадокса Банаха-Тарского: решение проблемы Де Гроота» (PDF), Журнал символической логики, 70 (3): 946–952, Дои:10.2178 / jsl / 1122038921, МИСТЕР 2155273.
- Вагон, Стан (1993), Парадокс Банаха – Тарского, Энциклопедия математики и ее приложений, 24, Издательство Кембриджского университета, п. 169, ISBN 9780521457040.