WikiDer > Групповое сокращение - Википедия

Group contraction - Wikipedia

В теоретической физике Юджин Вигнер и Эрдал Инёню обсудили[1] возможность получить от заданного Группа Ли другую (неизоморфную) группу Ли групповое сокращение относительно ее непрерывной подгруппы. Это равносильно ограничивающей операции над параметром Алгебра Ли, изменяя структурные константы этой алгебры Ли нетривиальным сингулярным образом при подходящих обстоятельствах.[2][3]

Например, алгебра Ли из Группа вращения 3D ТАК (3), [Икс1, Икс2] = Икс3и т.д., можно переписать заменой переменных Y1 = εX1, Y2 = εX2, Y3 = Икс3, так как

[Y1, Y2] = ε2 Y3,     [Y2, Y3] = Y1,     [Y3, Y1] = Y2.

Предел сокращения ε → 0 тривиализирует первый коммутатор и, таким образом, дает неизоморфную алгебру плоскости Евклидова группа, E2 ~ ISO (2). (Это изоморфно цилиндрической группе, описывающей движения точки на поверхности цилиндра. Это маленькая группа, или же подгруппа стабилизатора, из нуля четырехвекторный в Пространство Минковского.) В частности, генераторы перевода Y1, Y2, теперь генерируем абелев нормальная подгруппа из E2 (ср. Расширение группы), параболические преобразования Лоренца.

Подобные ограничения, имеющие большое применение в физике (см. Принципы переписки), договор

Примечания

Рекомендации