WikiDer > Теорема Нагелла – Лутца

Nagell–Lutz theorem

В математика, то Теорема Нагелла – Лутца это результат диофантова геометрия из эллиптические кривые, который описывает рациональный кручение точек на эллиптических кривых над целыми числами. Трюгве Нагелл и Элизабет Лутц.

Определение терминов

Предположим, что уравнение

определяет неособый кубическая кривая с целым числом коэффициенты а, б, c, и разреши D быть дискриминант кубической многочлен на правой стороне:

Формулировка теоремы

Если п = (Икс,у) это рациональная точка конечных порядок на C, для закон группы эллиптических кривых, тогда:

  • 1) Икс и у целые числа
  • 2) либо у = 0, и в этом случае п имеет второй порядок, иначе у разделяет D, откуда сразу следует, что y2 разделяет D.

Обобщения

Теорема Нагелла – Лутца обобщается на произвольные числовые поля и более общие кубические уравнения.[1] Для кривых над рациональными числами обобщение говорит, что для неособой кубической кривой, форма Вейерштрасса которой

имеет целые коэффициенты, любая рациональная точка п=(Икс,у) конечного порядка должны иметь целочисленные координаты или иметь порядок 2 и координаты вида Икс=м/4, у=п/ 8, для м и п целые числа.

История

Результат назван в честь двух независимых первооткрывателей, норвежца. Трюгве Нагелл (1895–1988), опубликовавший его в 1935 году, и Элизабет Лутц (1937).

Смотрите также

Рекомендации

  1. ^ См., Например, Теорема VIII.7.1. изДжозеф Х. Сильверман (1986), "Арифметика эллиптических кривых", Спрингер, ISBN 0-387-96203-4.