WikiDer > Гипотеза о кручении - Википедия

Torsion conjecture - Wikipedia

В алгебраическая геометрия и теория чисел, то гипотеза кручения или же гипотеза о равномерной ограниченности за абелевы разновидности заявляет, что порядок из торсионная группа абелевого многообразия над числовое поле может быть ограничен в терминах размерности разнообразия и числового поля. Более сильная версия гипотезы состоит в том, что кручение ограничено в терминах размерности многообразия и степени числового поля.

Эллиптические кривые

Гипотеза кручения для эллиптических кривых
ПолеТеория чисел
ПредполагаетсяЭндрю Огг
Предполагается в1973
Первое доказательствоБарри Мазур
Шелдон Каменны
Лоик Мерел
Первое доказательство в1977–1996

Гипотеза (сильного) кручения, впервые высказанная Огг (1973) полностью решено в случае эллиптические кривые. Барри Мазур (1977, 1978) доказал равномерную ограниченность эллиптических кривых над рациональными числами. Его методы были обобщены Каменный (1992) и Каменный и Мазур (1995), получившие равномерную ограниченность для квадратичные поля и числовые поля степени не выше 8 соответственно. Ну наконец то, Лоик Мерел (1996) доказал гипотезу для эллиптических кривых над любым числовым полем. Доказательство сосредоточено вокруг тщательного изучения рациональных точек зрения. классические модульные кривые. Эффективная оценка размера торсионной группы в терминах степени числового поля дается формулой Родитель (1999).

Мазур предоставил полный список возможных подгрупп кручения для рациональных эллиптических кривых. Если Cп обозначает циклическая группа порядка п, то возможными подгруппами кручения являются Cп с 1 ≤ п ≤ 10, а также C12; и прямая сумма из C2 с C2, C4, C6 или же C8. В обратном направлении все эти торсионные структуры возникают бесконечно часто над Q, поскольку все соответствующие модулярные кривые суть кривые нулевого рода с рациональной точкой. Полный список возможных торсионных групп также доступен для эллиптических кривых над полями квадратичных чисел. Существуют существенные частные результаты для полей четвертой и пятой чисел (Сазерленд 2012).

Смотрите также

Рекомендации