WikiDer > Квадратная черепица Order-7
Квадратная черепица Order-7 | |
---|---|
Модель диска Пуанкаре из гиперболическая плоскость | |
Тип | Гиперболический правильный тайлинг |
Конфигурация вершины | 47 |
Символ Шлефли | {4,7} |
Символ Wythoff | 7 | 4 2 |
Диаграмма Кокстера | |
Группа симметрии | [7,4], (*742) |
Двойной | Орден-4 семиугольная черепица |
Характеристики | Вершинно-транзитивный, реберно-транзитивный, лицо переходный |
В геометрия, то квадратная черепица порядка 7 это обычный облицовка гиперболическая плоскость. Она имеет Символ Шлефли из {4,7}.
Связанные многогранники и мозаика
Эта мозаика топологически связана как часть последовательности правильных многогранников и мозаик с вершинной фигурой (4п).
*п42 мутации симметрии правильных мозаик: {4,п} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Сферический | Евклидово | Компактный гиперболический | Паракомпакт | ||||||||
{4,3} | {4,4} | {4,5} | {4,6} | {4,7} | {4,8}... | {4,∞} |
Равномерная семиугольная / квадратная мозаика | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Симметрия: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
{7,4} | т {7,4} | г {7,4} | 2t {7,4} = t {4,7} | 2r {7,4} = {4,7} | рр {7,4} | tr {7,4} | sr {7,4} | с {7,4} | ч {4,7} | ||
Униформа двойников | |||||||||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
Рекомендации
- Джон Х. Конвей, Хайди Берджель, Хаим Гудман-Штраус, Симметрии вещей 2008, ISBN 978-1-56881-220-5 (Глава 19, Гиперболические архимедовы мозаики)
- «Глава 10: Обычные соты в гиперболическом пространстве». Красота геометрии: двенадцать эссе. Dover Publications. 1999 г. ISBN 0-486-40919-8. LCCN 99035678.
Смотрите также
Викискладе есть медиафайлы по теме Квадратная черепица Order-7. |
внешняя ссылка
- Вайсштейн, Эрик В. «Гиперболическая мозаика». MathWorld.
- Вайсштейн, Эрик В. «Гиперболический диск Пуанкаре». MathWorld.
- Галерея гиперболических и сферических плиток
- KaleidoTile 3: обучающая программа для создания сферических, плоских и гиперболических мозаик
- Гиперболические плоские мозаики, Дон Хэтч
Этот связанный с геометрией статья - это заглушка. Вы можете помочь Википедии расширяя это. |