WikiDer > Плоская трехапирогональная черепица
Плоская трехапирогональная черепица | |
---|---|
Модель диска Пуанкаре из гиперболическая плоскость | |
Тип | Гиперболическая равномерная мозаика |
Конфигурация вершины | 3.3.3.3.∞ |
Символ Шлефли | sr {∞, 3} или |
Символ Wythoff | | ∞ 3 2 |
Диаграмма Кокстера | или же |
Группа симметрии | [∞,3]+, (∞32) |
Двойной | Пятиугольная мозаика с бесконечными цветочками Order-3 |
Характеристики | Вершинно-транзитивный Хиральный |
В геометрия, то плоскостная трехапирогональная черепица это равномерная черепица из гиперболическая плоскость с Символ Шлефли из sr {∞, 3}.
Изображений
Нарисовано хиральными парами с отсутствующими краями между черными треугольниками:
Двойная черепица:
Связанные многогранники и мозаика
Это гиперболическое разбиение топологически связано как часть последовательности равномерных пренебрежительно многогранники с конфигурации вершин (3.3.3.3.n) и [n, 3] Группа Коксетера симметрия.
п32 мутации симметрии курносых плиток: 3.3.3.3.n | ||||||||
---|---|---|---|---|---|---|---|---|
Симметрия п32 | Сферический | Евклидово | Компактный гиперболический | Paracomp. | ||||
232 | 332 | 432 | 532 | 632 | 732 | 832 | ∞32 | |
Курносый цифры | ||||||||
Конфиг. | 3.3.3.3.2 | 3.3.3.3.3 | 3.3.3.3.4 | 3.3.3.3.5 | 3.3.3.3.6 | 3.3.3.3.7 | 3.3.3.3.8 | 3.3.3.3.∞ |
Гироскоп цифры | ||||||||
Конфиг. | V3.3.3.3.2 | V3.3.3.3.3 | V3.3.3.3.4 | V3.3.3.3.5 | V3.3.3.3.6 | V3.3.3.3.7 | V3.3.3.3.8 | V3.3.3.3.∞ |
Паракомпактные равномерные мозаики в семействе [∞, 3] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Симметрия: [∞,3], (*∞32) | [∞,3]+ (∞32) | [1+,∞,3] (*∞33) | [∞,3+] (3*∞) | |||||||
= | = | = | = или же | = или же | = | |||||
{∞,3} | т {∞, 3} | г {∞, 3} | т {3, ∞} | {3,∞} | rr {∞, 3} | tr {∞, 3} | sr {∞, 3} | h {∞, 3} | час2{∞,3} | s {3, ∞} |
Униформа двойников | ||||||||||
V∞3 | V3.∞.∞ | V (3.∞)2 | V6.6.∞ | V3∞ | V4.3.4.∞ | V4.6.∞ | V3.3.3.3.∞ | V (3.∞)3 | V3.3.3.3.3.∞ |
Смотрите также
- Список однородных плоских мозаик
- Замощения правильных многоугольников
- Равномерные мозаики в гиперболической плоскости
Рекомендации
- Джон Х. Конвей, Хайди Берджель, Хаим Гудман-Штрасс, Симметрии вещей 2008, ISBN 978-1-56881-220-5 (Глава 19, Гиперболические архимедовы мозаики)
- «Глава 10: Обычные соты в гиперболическом пространстве». Красота геометрии: двенадцать эссе. Dover Publications. 1999 г. ISBN 0-486-40919-8. LCCN 99035678.