WikiDer > Усеченная квадратная мозаика порядка 7
Усеченная квадратная мозаика порядка 7 | |
---|---|
Модель диска Пуанкаре из гиперболическая плоскость | |
Тип | Гиперболическая равномерная мозаика |
Конфигурация вершины | 8.8.7 |
Символ Шлефли | т {4,7} |
Символ Wythoff | 2 7 | 4 |
Диаграмма Кокстера | |
Группа симметрии | [7,4], (*742) |
Двойной | Орден-4 гептакис семиугольная черепица |
Характеристики | Вершинно-транзитивный |
В геометрия, то усеченная квадратная мозаика порядка 7 является равномерным замощением гиперболическая плоскость. Она имеет Символ Шлефли из т0,1{4,7}.
Связанные многогранники и мозаика
*п42 мутации симметрии усеченных мозаик: п.8.8 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Симметрия *п42 [n, 4] | Сферический | Евклидово | Компактный гиперболический | Паракомпакт | |||||||
*242 [2,4] | *342 [3,4] | *442 [4,4] | *542 [5,4] | *642 [6,4] | *742 [7,4] | *842 [8,4]... | *∞42 [∞,4] | ||||
Усеченный цифры | |||||||||||
Конфиг. | 2.8.8 | 3.8.8 | 4.8.8 | 5.8.8 | 6.8.8 | 7.8.8 | 8.8.8 | ∞.8.8 | |||
н-кис цифры | |||||||||||
Конфиг. | V2.8.8 | V3.8.8 | V4.8.8 | V5.8.8 | V6.8.8 | V7.8.8 | V8.8.8 | V∞.8.8 |
Равномерная семиугольная / квадратная мозаика | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Симметрия: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
{7,4} | т {7,4} | г {7,4} | 2t {7,4} = t {4,7} | 2r {7,4} = {4,7} | рр {7,4} | tr {7,4} | sr {7,4} | с {7,4} | ч {4,7} | ||
Униформа двойников | |||||||||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
Рекомендации
- Джон Х. Конвей, Хайди Берджель, Хаим Гудман-Штрасс, Симметрии вещей 2008, ISBN 978-1-56881-220-5 (Глава 19, Гиперболические архимедовы мозаики)
- «Глава 10: Обычные соты в гиперболическом пространстве». Красота геометрии: двенадцать эссе. Dover Publications. 1999 г. ISBN 0-486-40919-8. LCCN 99035678.
Смотрите также
Викискладе есть медиафайлы по теме Равномерная черепица 7-8-8. |
внешняя ссылка
- Вайсштейн, Эрик В. «Гиперболическая мозаика». MathWorld.
- Вайсштейн, Эрик В. «Гиперболический диск Пуанкаре». MathWorld.
- Галерея гиперболических и сферических плиток
- KaleidoTile 3: обучающая программа для создания сферических, плоских и гиперболических мозаик
- Гиперболические плоские мозаики, Дон Хэтч
Этот связанные с геометрией статья - это заглушка. Вы можете помочь Википедии расширяя это. |